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Problem StatementProblem Statement

We are learning from:We are learning from:
a a Stochastic TeacherStochastic Teacher or        a or        a Stochastic LiarStochastic Liar

Do I go … ?Do I go … ?

LeftLeft RightRight

LIFELIFE DEATHDEATH
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Tells Tells LiesLies Tells Tells TruthTruth

LifeLife Gate Gate DeathDeath GateGate

Problem StatementProblem Statement

TeacherTeacher / / Liar : Liar : Identity UnknownIdentity Unknown



 We have to ask only We have to ask only ONEONE question, question, 


 Go through the Gate to Go through the Gate to LIFELIFE..
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We have :We have :

General Version of this ProblemGeneral Version of this Problem

λ*
00 11



 A Stochastic A Stochastic TeacherTeacher or a or a LiarLiar



 The Answer in [0,1] ; Any point in IntervalThe Answer in [0,1] ; Any point in Interval
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QuestionQuestion::
Shall we go Shall we go LeftLeft or or Right Right ??

TeacherTeacher
Go Go RightRight with prob.  pwith prob.  p
Go Go LeftLeft with prob.  1 with prob.  1 -- p ,   p ,   where where p > 0.5p > 0.5

LiarLiar
Do the Do the samesame with  with  p < 0.5p < 0.5

General Version of this ProblemGeneral Version of this Problem

λ*λ ( )n
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Stochastic TeacherStochastic Teacher

We are on a Line Searching for a Point We are on a Line Searching for a Point 
Don't know how far we are from the pointDon't know how far we are from the point

We interact with a We interact with a Deterministic TeacherDeterministic Teacher
Charges us with how far we are from pointCharges us with how far we are from point

If Points are Integers :If Points are Integers :
Problem can be solved in O(N) stepsProblem can be solved in O(N) steps

QuestionQuestion ::
What shall we do if the What shall we do if the Teacher is StochasticTeacher is Stochastic
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Model of ComputationModel of Computation

   Stochastic Teacher 
 
      Environment

           
   Learning Scheme

λ(n) β(n)

We are searching for a point We are searching for a point λλ** ∈∈ [0,1][0,1]
We interact with a We interact with a Stochastic TeacherStochastic Teacher

ββ(n)(n) : Response from the Environment: Response from the Environment
ºº Move Left / RightMove Left / Right
ºº StochasticStochastic ---- ErroneousErroneous
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Model of ComputationModel of Computation

Suppose Suppose λλ** = 0.8725= 0.8725
If the Current choice for If the Current choice for λλ is 0.6345is 0.6345

We get a responseWe get a response
Go Go RightRight with prob. pwith prob. p
Go Go LeftLeft with prob. 1with prob. 1-- pp

Fortunately,The Fortunately,The Environment is InformativeEnvironment is Informative
i.e., p > 0.5i.e., p > 0.5

QuestionQuestion : Can we still learn Best parameter ?: Can we still learn Best parameter ?

Numerous applications:Numerous applications:NONLINEAR OPTIMIZATIONNONLINEAR OPTIMIZATION
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Application to OptimizationApplication to Optimization

Aim in OptimizationAim in Optimization ::
Minimize (maximize) a criterion functionMinimize (maximize) a criterion function

Generally speakingGenerally speaking ::
The algorithm works from The algorithm works from 
a "current" solution a "current" solution 
towards the towards the OptimalOptimal (???) solution (???) solution 

Based on information it currently has. Based on information it currently has. 
Crucial Issue:Crucial Issue:

What is the What is the ParameterParameter the the 
Optimization Algorithm Optimization Algorithm 

should use. should use. 
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Application to OptimizationApplication to Optimization

If the parameter is If the parameter is Too SmallToo Small
the convergence is the convergence is SluggishSluggish. . 

If it is If it is Too LargeToo Large
Erroneous ConvergenceErroneous Convergence or or OscillationsOscillations. . 

In many cases the parameter In many cases the parameter 
related to the second derivativerelated to the second derivative
analogous to a "Newton's" method.analogous to a "Newton's" method.
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Application to OptimizationApplication to Optimization

First First Relax Assumptions onRelax Assumptions on λ

NormalizeNormalize if bounds on parameter known :if bounds on parameter known :

λ = (µ - µmin)/(µmax - µmin)

ThusThus λλ** ∈∈ [0,1][0,1]

In the case of Neural Networks FunctionsIn the case of Neural Networks Functions
range of parameter varies from 10range of parameter varies from 10--33 to 10to 1033

Use aUse a monotonic onemonotonic one--toto--one mappingone mapping
λ := A. Logbµ for some bfor some b.
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Application to OptimizationApplication to Optimization

SinceSince λ Converges Converges Arbitrarily CloseArbitrarily Close toto λ∗

µ converges converges Arbitrarily CloseArbitrarily Close toto µ∗.

Can Learn the Can Learn the Best ParameterBest Parameter in NN...in NN...
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Proposed SolutionProposed Solution

Work in a Work in a DiscretizedDiscretized spacespace
DiscretizeDiscretize λλ to be element of a finite setto be element of a finite set

Makes steps from one value of  Makes steps from one value of  λ λ to the next to the next 
Based on Response from the Based on Response from the EnvironmentEnvironment

{ , , , , , }0
1 1 1

1
N N

N
N

K
−
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Advantages of Advantages of DiscretizingDiscretizing in Learningin Learning
(i) (i) PracticalPractical considerationsconsiderations

Random Number GeneratorRandom Number Generator
Typically finite accuracyTypically finite accuracy
Action probability not any real numberAction probability not any real number

(ii) (ii) Probability ChangesProbability Changes
Jumps and not continuously. Jumps and not continuously. 
Convergence in "finite" time possibleConvergence in "finite" time possible

Advantages of Advantages of DiscretizingDiscretizing in Learningin Learning

(iii) (iii) ProofsProofs εε--optimal differentoptimal different
Discrete State Markov ChainDiscrete State Markov Chain
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(iv) (iv) Rate of convergenceRate of convergence
Faster than continuous schemesFaster than continuous schemes
Increase probability to unity directlyIncrease probability to unity directly
rather than asymptotically.rather than asymptotically.

(v) (v) Reduces the time per iterationReduces the time per iteration
Addition is quicker than MultiplicationAddition is quicker than Multiplication
Don't need floating point numbersDon't need floating point numbers

GenerallyGenerally :: Discrete algorithms are Discrete algorithms are superiorsuperior
In terms of both time and spaceIn terms of both time and space. . 

Advantages of Advantages of DiscretizingDiscretizing in Learningin Learning

0                 2                   4                  6      0                 2                   4                  6      8 8 
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Assume Assume Current ValueCurrent Value for for λ λ is is λ(λ(n). Then :n). Then :

The Learning AlgorithmThe Learning Algorithm

In In InternalInternal State (i.e., State (i.e., 0 < 0 < λλ(n) < 1(n) < 1) :) :

If If ΕΕ suggests suggests IncreasingIncreasing λλ
λ(λ(n+1) := n+1) := λλ(n) + 1/N(n) + 1/N

ElseElse {If {If ΕΕ suggests suggests DecreasingDecreasing λλ }}
λλ(n+1) := (n+1) := λλ(n) (n) -- 1/N1/N
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At End StatesAt End States ::

The Learning AlgorithmThe Learning Algorithm

If If λλ(n) = 1(n) = 1
If If ΕΕ suggests suggests IncreasingIncreasing λλ

λλ(n+1) := (n+1) := λλ(n)(n)
ElseElse {If E suggests decreasing {If E suggests decreasing λλ }}

λλ(n+1) := (n+1) := λλ(n) (n) -- 1/N1/N
If If λλ(n) = 0(n) = 0

If If ΕΕ suggests suggests DecreasingDecreasing λλ
λλ(n+1) := (n+1) := λλ(n)(n)

ElseElse {If {If ΕΕ suggests decreasing suggests decreasing λλ }}
λλ(n+1) := (n+1) := λλ(n) + 1/N(n) + 1/N
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NoteNote ::
Rules are Rules are DeterministicDeterministic
State Transitions are State Transitions are stochasticstochastic
Because “Environment” is Because “Environment” is stochasticstochastic..

Properties of this SchemeProperties of this Scheme

The Learning AlgorithmThe Learning Algorithm

lim lim [ ( )] *

N n
E n

→ ∞ → ∞
→λ λ

Theorem ITheorem I
The learning algorithm is The learning algorithm is εε--optimal.optimal.

Sketch of ProofSketch of Proof ::
We can prove that as N is increased :We can prove that as N is increased :
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The The StatesStates of the Markov Chain of the Markov Chain 
Integers {0,1,2,..., N} Integers {0,1,2,..., N} 
State 'i' refers to the value i/N. State 'i' refers to the value i/N. 

The Learning AlgorithmThe Learning Algorithm

λ*

GoodGood Advice Advice -- w.p.    w.p.    pp
WrongWrong advice advice -- w.p.    w.p.    q = 1 q = 1 -- pp
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Let Z be the index for which Let Z be the index for which 
Z/N < Z/N < λλ** < (Z+1)/N.< (Z+1)/N.

Then if q = 1Then if q = 1--p, the p, the Transition MatrixTransition Matrix T is :T is :

ÎÎ TTi,i+1i,i+1 == pp if 0 if 0 ≤≤ i i ≤≤ Z Z 

ÎÎ == qq if Z < i if Z < i ≤≤ NN--1.1.

ÎÎ TTi,ii,i--11 == qq if 1 < i if 1 < i ≤≤ Z Z 

ÎÎ == pp if Z < i if Z < i ≤≤ N.N.

For the self loops :For the self loops :
TT0,00,0 = = qq
TTN,NN,N == qq

The Learning AlgorithmThe Learning Algorithm
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The Markov MatrixThe Markov Matrix

By a lengthy induction it can be proved thatBy a lengthy induction it can be proved that :
πi = e.πi-1 wheneverwhenever i ≤ Z.
πi = πi-1 / e wheneverwhenever i > Z, andand,
πZ+1 = πZ. 

wherewhere e = p/q < 1.

q p 0 . . . 0 0 . . 0 0
q 0 p . . . 0 0 . . 0 0
0 q 0 p . . 0 0 . . 0 0
. . . . . . . . . . . .
. . . . . . . . . . . .
0 0 0 . . . p . . . . .
0 0 0 . . q 0 p . . . .
0 0 0 . . 0 p 0 q . 0 0
0 0 0 . . . 0 p 0 . 0 0
0 0 0 . . . . . . . 0 0
0 0 0 0 0 0 0 0 0 p 0 q
0 0 0 0 0 0 0 0 0 0 p q
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The Learning AlgorithmThe Learning Algorithm

To Conclude the proof compute :To Conclude the proof compute :
E[λ(∞)]  asas N →∞. 

   

INCREASE /  DECREASEINCREASE /  DECREASE : : GEOMETRIC …...GEOMETRIC …...
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The Learning AlgorithmThe Learning Algorithm

AsAs N → ∞, the Prob. Mass looks like this :the Prob. Mass looks like this :

λ∗

An An IncreasingIncreasing Geometric seriesGeometric series
0 till0 till Z. Most of the mass nearMost of the mass near Z.

A A DecreasingDecreasing Geometric seriesGeometric series
Z+1 tilltill N. Most of the mass nearMost of the mass near Z.

IndeedIndeed,  E[λ(∞)] is arbitrarily close tois arbitrarily close to λ∗.



10/6/2005 24

ExampleExample

Partition interval [0,1] into eight intervalsPartition interval [0,1] into eight intervals
{0, 1/8 , 2/8 , … , 7/8 , 1) } 

SupposeSuppose λ∗ isis 0.65. 

(i)(i) All transitions forAll transitions for {0, 1/8, 2/8 , 3/8, 4/8, 5/8 }
IncreasedIncreased with prob. with prob. p
DecreasedDecreased with prob.with prob. q

(ii)(ii) All transitions forAll transitions for {6/8, 7/8 , 1} are :are :
DecreasedDecreased with prob. with prob. p 
IncreasedIncreased with prob. with prob. p
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ExampleExample

In this case, If e := p/q  :In this case, If e := p/q  :

πo ← K ; πi ← K.e ;    π2 ← K.e2

π3 ← K.e3 ;   π4 ← K.e4;   
π5 ← K.e5 π6 ← K.e5 ;   
π7 ← K.e4;   π8 ← K.e3

GEOMETRICGEOMETRIC
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Experimental ResultsExperimental Results

Table I :  True value ofTable I :  True value of E[λ(∞)] for various for various p 
and Various Resolutions,and Various Resolutions, N. λ∗ is 0.9123.

Log2N p = 0.70 p = 0.85 p = 0.95
2 0.7470205 0.8341304 0.8644939
3 0.8615779 0.9167632 0.9322447
4 0.885711 0.9035668 0.9060284
5 0.9164335 0.9215552 0.9218668
6 0.9137105 0.914061 0.9140624
7 0.9101543 0.9101563 0.9101561
8 0.9121094 0.9121095 0.9121093
9 0.9130859 0.9130861 0.9130858

10 0.9125975 0.9125977 0.9125975
11 0.9123535 0.9123536 0.9123535
12 0.9122314 0.9122314 0.9122314
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Experimental ResultsExperimental Results
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Figure IFigure I :  Plot of :  Plot of E[λ(∞)] withwith N.
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Experimental ResultsExperimental Results

Figure IIFigure II :  Plot of:  Plot of E[λ(∞)] withwith p. 

0.5

0.6

0.7

0.8

0.9

1

E[
λ(

∞
)]

0.
5

0.
6

0.
7

0.
8

0.
9 1

Effectiveness - p

1024

256

64

16



10/6/2005 29

p1(n)
p2(n)
p3(n)
p4(n)

=

0.4
0.3
0.1
0.2

If α2 Chosen & Rewarded.
→→ p2 increased; 
→→ p1, p3, p4 decreased linearly.

p1(∞)
p2(∞)
p3(∞)
p4(∞)

If α1 is the best action:
1
0
0
0

p1(n+1)
p2(n+1)
p3(n+1)
p4(n+1)

=

0.36
1-0.36-0.9-0.18
0.09
0.18

=

0.36
0.37
0.09
0.18

Continuous Solution : LContinuous Solution : LRIRI SchemeScheme
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Continuous SolutionContinuous Solution

II Systematically ExploreSystematically Explore the Given Interval the Given Interval 

 ∆1 ∆2 ∆3

 λ* Here ?  λ* Here ?  λ* Here ?

II Use midUse mid--pointpoint as the as the Initial GuessInitial Guess

II PartitionPartition the interval into 3 subthe interval into 3 sub--intervalsintervals

II Use Use εε--optimal  learningoptimal  learning in each Subin each Sub--intervalinterval
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Continuous SolutionContinuous Solution

II Is Is λλ** LeftLeft, , InsideInside or or RightRight ofof subsub--interval??interval??

 ∆1 ∆2 ∆3

 λ* Here ?  λ* Here ?  λ* Here ?

II Intelligently Intelligently EliminateEliminate subsub--intervalsintervals
II Recursively SearchRecursively Search the remaining subthe remaining sub--

interval(s) until the width is small enoughinterval(s) until the width is small enough
II The mid point of this interval is the resultThe mid point of this interval is the result..
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Adaptive Tertiary SearchAdaptive Tertiary Search

II ∆∆ = [= [σσ,,γγ) : ) : Current intervalCurrent interval containing containing λλ*.*.

II It is It is PartitionedPartitioned into into ∆∆j=1,2,3j=1,2,3 subsub--intervals. intervals. 
II λλ* is in * is in exactlyexactly one of subone of sub--intervals intervals ∆∆j=1,2,3j=1,2,3..
II εε--optimal Automata decides optimal Automata decides RelativeRelative PositionPosition

of of ∆∆jj with respect to with respect to λλ*. *. 
II Since points on the real interval are Since points on the real interval are 

Monotonically IncreasingMonotonically Increasing, , ∆∆11 < < ∆∆22 <<∆∆33

 ∆1 ∆2 ∆3

 λ* Here ?  λ* Here ?  λ* Here ?
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Adaptive Tertiary SearchAdaptive Tertiary Search

II PrunedPruned Interval Interval ∆∆ ⊃⊃ ∆∆// so that:so that:

•• λλ*  *  inin ∆∆/ / 

•• ∆∆/ / is one ofis one of {{∆∆11,   ,   ∆∆22,  ,  ∆∆33 ,   ,   ∆∆11 U ∆∆22,   ,   ∆∆22 U ∆∆33}}

 ∆1 ∆2 ∆3

 λ* Here ? Yes
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Adaptive Tertiary SearchAdaptive Tertiary Search

II Because of Because of monotonicitymonotonicity of intervals of intervals 

II Because of Because of εε--optimalityoptimality of the schemesof the schemes

II The above two constraints indicate that The above two constraints indicate that 
•• the Search the Search convergesconverges
•• Search converges Search converges monotonicallymonotonically
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Learning Automata for Learning Automata for ∆∆jj

II Each Automaton :Each Automaton :
•• Two possible actions : Two possible actions : Left HalfLeft Half / / Right HalfRight Half

II Uses Input from Teacher : Uses Input from Teacher : LLRIRI SchemeScheme

II Converges after One Epoch to Converges after One Epoch to 
•• LeftLeft End End →→ [1,  0]TT

•• RightRight End End →→ [0,  1]TT

•• Cannot Cannot DecdeDecde (Inside) (Inside) →→ [0.78,  0.22]T T (e.g.).
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Location ofLocation of ∆∆jj Convergence ofConvergence of LLRIRI

Lj Rj

∆j

λ*

(a)

∆j

Lj Rj λ*

(b)

Lj Rj

∆j

λ*
(e)
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Results on ConvergenceResults on Convergence

II For an For an Stochastic TeacherStochastic Teacher &The &The LLRIRI

If If ((λλ* * Left ofLeft of ∆∆jj ) ) ThenThen Pr Pr ((ΩΩj j ==Left Left ) ) →→ 11

If If ((λλ* * Right ofRight of ∆∆jj ) ) ThenThen Pr Pr ((ΩΩj j ==RightRight ) ) →→ 11

If If ((λλ* * InsideInside ∆∆jj ) ) ThenThen
Pr Pr ((ΩΩj j ==Left, Right, InsideLeft, Right, Inside ) ) →→ 11

 ∆1 ∆2 ∆3

 λ* Here ?
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Results on ConvergenceResults on Convergence

II ConverselyConversely, , 
If If ((ΩΩj j ==Left Left ) ) ThenThen Pr Pr ((λλ* * Left ofLeft of ∆∆jj ) ) →→ 11

If If ((ΩΩj j ==RightRight ) ) ThenThen Pr Pr ((λλ* * Right ofRight of ∆∆jj ) ) →→ 11

If If ((ΩΩj j ==InsideInside ) ) ThenThen Pr Pr ((λλ* * InsideInside ∆∆jj ) ) →→ 11

 ∆1 ∆2 ∆3

 λ* Here ?
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Decision Table to Prune Decision Table to Prune ∆∆jj

Output ΩΩ11  for
∆∆11

Output ΩΩ22

for ∆∆22
Output ΩΩ33 for

∆∆33
NNeeww  ssuubb--
iinntteerrvvaall  ∆∆''

Left Left Left ∆∆11

Inside Left Left ∆∆11

Right Left Left ∆∆11  U ∆∆22

Right Inside Left ∆∆22

Right Right Left ∆∆22  U ∆∆33

Right Right Inside ∆∆33

Right Right Right ∆∆33

 ∆1 ∆2 ∆3
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Convergence : Stochastic TeachersConvergence : Stochastic Teachers

II In the Previous Decision TableIn the Previous Decision Table

II Only 7 out of 27 combinations are shown.Only 7 out of 27 combinations are shown.

II The Rest The Rest ImpossibleImpossible

II The The Decision Table to prune is Decision Table to prune is CompleteComplete

II Pr[ Pr[ λλ* in the Pruned Interval ] * in the Pruned Interval ] →→ 11
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Consequences of ConvergenceConsequences of Convergence

II Consequence : Consequence : Dual ProblemDual Problem
•• If E : Environment w.p. p then, E’ has p’ = 1If E : Environment w.p. p then, E’ has p’ = 1--pp

•• Dual of an Dual of an Stochastic TeacherStochastic Teacher (p > 0.5) is a (p > 0.5) is a 
Stochastic LiarStochastic Liar (p’ < 0.5)(p’ < 0.5)
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Decision Table for Decision Table for StochStoch. Liar. Liar

II How will the How will the StochStoch. Liar Teach ?. Liar Teach ?

 ∆1 ∆2 ∆3

 λ* Here

 Converge  Converge

II LeftLeft Machine : Converge to Machine : Converge to LeftLeft EndEnd

II RightRight Machine : Converge to Machine : Converge to RightRight EndEnd
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Learning fromLearning from Stochastic LiarStochastic Liar

II Start with an Start with an Extended Search IntervalExtended Search Interval
  ∆∆’’ = [= [--1,2) where as 1,2) where as ∆∆ =[0,1)=[0,1)

 [-1, 0) [0, 1] (1,2]

 λ* Here

 Converge  Converge

II After ONE EpochAfter ONE Epoch
  Liar Will Force [Liar Will Force [--1,0) or 1,0) or (0,2](0,2] with Prob. 1.with Prob. 1.

IIGOTCHA RED HANDED !!!!!GOTCHA RED HANDED !!!!!
II We Know Environment is We Know Environment is DeceptiveDeceptive
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Learning from Stochastic LiarLearning from Stochastic Liar

II KNOW Environment is KNOW Environment is DeceptiveDeceptive
II Use the Use the Original intervalOriginal interval ∆∆ =[0,1) =[0,1) 
  Treat Treat Go LeftGo Left as as Go RightGo Right
  Go RightGo Right as as Go LeftGo Left !!!! !!!! 
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Experimental ResultsExperimental Results

p θ=0.8 θ=0.85 θ=0.9

0.10 0.912298 0.912273 0.912194

0.15 0.912312 0.912298 0.912222

Deceptive
Environment

0.20 0.912193 0.912299 0.912236

0.80 0.912317 0.912284 0.912234

0.85 0.912299 0.912275 0.912202

Informative
Environment

0.90 0.912302 0.912275 0.912202

NNoottee::  λλ* = 0.9123, NN∞∞   = 250, εε= 0.005
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Convergence of CPLConvergence of CPL--ATSATS

0.72
0.74
0.76
0.78
0.8
0.82
0.84
0.86
0.88
0.9
0.92
0.94

1 3 5 7 9 11 13 15

Epoch n

E[
l(

n)
] p=0.1

p=0.35
p=0.8
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Observations on ResultsObservations on Results

II Convergence : p=0.1 & p=0.8 Convergence : p=0.1 & p=0.8 -- almost identicalalmost identical The The 
former is highly deceptive environmentformer is highly deceptive environment

II Even in the first epoch Even in the first epoch ONLY 9% errorONLY 9% error
II In two more epochs the error is In two more epochs the error is within 1.5%within 1.5%
II For p nearer 0.5 the convergence is For p nearer 0.5 the convergence is SluggishSluggish
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ConclusionsConclusions

II Can use a combination of Can use a combination of LLRI RI and Pruningand Pruning

II Scheme is Scheme is εε--optimaloptimal. . 
II Can be applied to Stochastic Can be applied to Stochastic Teachers and LiarsTeachers and Liars

II Can detect the nature of Unknown EnvironmentCan detect the nature of Unknown Environment

II Can learn the parameter correctly w. p. Can learn the parameter correctly w. p. →→ 11

  THANK YOU THANK YOU 

  VERY MUCHVERY MUCH
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How to Simulate EnvironmentHow to Simulate Environment

Our idea : analogous to the RPROP network.Our idea : analogous to the RPROP network.

∆ij(t)  =  -∆ij(t-1).η+ IfIf *> 0,
=  -∆ij(t-1).η- IfIf *< 0,
=   ∆ij(t-1) OtherwiseOtherwise.

wherewhere η+ andand η- are parameters of the scheme.are parameters of the scheme.

Increments are influenced by Increments are influenced by 
the sign of two succeeding derivativesthe sign of two succeeding derivatives
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Experimental ResultsExperimental Results
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Figure IFigure I : : Plot of Plot of E[λ(∞)] withwith N.
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Type II ResultsType II Results

Figure III :    Plot of est. ofFigure III :    Plot of est. of E[λ(n)] with time,with time, n, forfor N = 16.
λ∗ isis 0.9123.
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Simulations Simulations 
Hundred parallel experiments for various values ofHundred parallel experiments for various values of p
Record ensemble average of the resultsRecord ensemble average of the results

By n=128, By n=128, λλ(n)=0.910 (n)=0.910 
(N=16)  (p=0.7)(N=16)  (p=0.7)



10/6/2005 52

Type II ResultsType II Results

Figure IVFigure IV :  Plot of est. of:  Plot of est. of E[λ(n)] with timewith time, n, forfor N = 64.
λ∗ isis 0.9123.
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Learning Automata for Learning Automata for ∆∆jj (Cont’d)(Cont’d)

II Rule for updating action probabilities:Rule for updating action probabilities:
If If ααkk

jj was rewarded,was rewarded,

PP11--kk
jj(n+1) := (n+1) := θθ. P. P11--kk

jj(n) (n) 

PPkk
jj(n+1) := (1(n+1) := (1--θθ)). P. P11--kk

jj(n)(n)

where, where, θθ is the Lis the LRIRI reward parameterreward parameter

II The decision output The decision output ΩΩj j for at the end of Nfor at the end of N∞∞

iterations:iterations:
LeftLeft if Pif P00

jj(N(N∞∞) >= 1 ) >= 1 -- εε

RightRight if Pif P11
jj(N(N∞∞) >= 1 ) >= 1 -- εε

InsideInside otherwise.otherwise.
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How to Simulate the EnvironmentHow to Simulate the Environment

Typically, ifTypically, if E is the Criterion Functionis the Criterion Function

QuestionQuestion ::
When isWhen is δE/δx zero? zero? 

Simple LinearSimple Linear rule rule 
MovesMoves 'x' in the direction of the solution.in the direction of the solution.

Second DerivativeSecond Derivative information tellsinformation tells
How much to moveHow much to move..
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How to Simulate EnvironmentHow to Simulate Environment

Whenever :Whenever :
Partial Derivative Partial Derivative changeschanges signsign
ÎÎ Last update was too bigLast update was too big
ÎÎ Jumped over a local minimumJumped over a local minimum
ÎÎ Increment is decreased byIncrement is decreased by η-. 

If the Derivative If the Derivative RetainsRetains its signits sign
increment  is increment  is slightly increasedslightly increased
ÎÎ Converge faster in shallow regionsConverge faster in shallow regions
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How to Simulate environmentHow to Simulate environment

Same philosophy for designing E  Same philosophy for designing E  
If the If the Partial DerivativePartial Derivative changes signchanges sign

DecrementDecrement value ofvalue of λ
Otherwise Otherwise IncrementIncrement it.it.

Effectively attempting to "simulate" Effectively attempting to "simulate" 
Newton's Rule Newton's Rule 
Without Evaluating the Second DerivativesWithout Evaluating the Second Derivatives..


