Parameter Learning from Stochastic Teachers and Stochastic Compulsive Liars

B. John Oommen

SCS, Carleton University
Plenary Talk : PRIS'04 (Porto)
A Joint Work with
G. Raghunath and B. Kuipers

Problem Statement

We are learning from:

a Stochastic Teacher or
a Stochastic Liar

Problem Statement

Teacher / Liar : Identity Unknown

Tells Lies
Life Gate

Tells Truth
Death Gate

We have to ask only ONE question,
G Go through the Gate to LIFE.

General Version of this Problem

We have :
A Stochastic Teacher or a Liar
The Answer in [0, 1] ; Any point in Interval

General Version of this Problem

Question:
Shall we go Left or Right?
Teacher
Go Right with prob. p
Go Left with prob. 1 - p, where $p>0.5$
Liar
Do the same
with $p<0.5$

Stochastic Teacher

We are on a Line Searching for a Point Don't know how far we are from the point

We interact with a Deterministic Teacher Charges us with how far we are from point

If Points are Integers :
Problem can be solved in $O(N)$ steps
Question:
What shall we do if the Teacher is Stochastic

Model of Computation

We are searching for a point $\lambda^{*} \in[0,1]$ We interact with a Stochastic Teacher

$\beta(n) \quad$: Response from the Environment

- Move Left / Right
- Stochastic -- Erroneous

Model of Computation

Suppose $\lambda^{*}=0.8725$
If the Current choice for λ is 0.6345
We get a response

Go Right
Go Left
with prob. p
with prob. 1-p

Fortunately, The Environment is Informative

$$
\text { i.e., } p>0.5
$$

Question : Can we still learn Best parameter?
Numerous applications:NONLINEAR OPTIMIZATION

Application to Optimization

Aim in Optimization :

Minimize (maximize) a criterion function
Generally speaking :
The algorithm works from
a "current" solution towards the Optimal (???) solution
Based on information it currently has.
Crucial Issue:
What is the Parameter the
Optimization Algorithm
should use.

Application to Optimization

If the parameter is Too Small the convergence is Sluggish.

If it is Too Large
Erroneous Convergence or Oscillations.

In many cases the parameter
related to the second derivative analogous to a "Newton's" method.

Application to Optimization

First Relax Assumptions on λ
Normalize if bounds on parameter known :

$$
\begin{gathered}
\lambda=\left(\mu-\mu_{\min }\right) /\left(\mu_{\max }-\mu_{\min }\right) \\
\text { Thus } \lambda^{*} \in[0,1]
\end{gathered}
$$

In the case of Neural Networks Functions range of parameter varies from 10^{-3} to 10^{3}

Use a monotonic one-to-one mapping

$$
\lambda:=A . \log _{b} \mu \quad \text { for some } b .
$$

Application to Optimization

Since λ Converges Arbitrarily Close to λ^{*} μ converges Arbitrarily Close to μ^{*}.

Can Learn the Best Parameter in NN...

Proposed Solution

Work in a Discretized space
Discretize λ to be element of a finite set

$$
\left\{0, \frac{1}{N}, \frac{1}{N}, \ldots, \frac{N-1}{N}, 1\right\}
$$

Makes steps from one value of λ to the next Based on Response from the Environment

Advantages of Discretizing in Learning

Advantages of Discretizing in Learning
(i) Practical considerations

Random Number Generator
Typically finite accuracy
Action probability not any real number
(ii) Probability Changes

Jumps and not continuously.
Convergence in "finite" time possible
(iii) Proofs ε-optimal different

Discrete State Markov Chain

Advantages of Discretizing in Learning

(iv) Rate of convergence

Faster than continuous schemes Increase probability to unity directly rather than asymptotically.

(v) Reduces the time per iteration

Addition is quicker than Multiplication
Don't need floating point numbers

Generally: Discrete algorithms are superior In terms of both time and space.

The Learning Algorithm

Assume Current Value for λ is $\lambda(n)$. Then :
In Internal State (i.e., $0<\lambda(n)<1$):
If E suggests Increasing λ

$$
\lambda(n+1):=\lambda(n)+1 / \mathbb{N}
$$

Else \{If E suggests Decreasing $\lambda\}$

$$
\lambda(n+1):=\lambda(n)-1 / \mathbb{N}
$$

The Learning Algorithm

At End States :

$$
\text { If } \lambda(n)=1
$$

If E suggests Increasing λ

$$
\lambda(n+1):=\lambda(n)
$$

Else $\{1 \mathrm{f} E$ suggests decreasing $\lambda\}$

$$
\lambda(n+1):=\lambda(n)-1 / \mathbb{N}
$$

If $\lambda(n)=0$
If E suggests Decreasing λ

$$
\lambda(n+1):=\lambda(n)
$$

Else \{If E suggests decreasing λ \} $\lambda(n+1):=\lambda(n)+1 / \mathrm{N}$

The Learning Algorithm

Note :

Rules are Deterministic
State Transitions are stochastic
Because "Environment" is stochastic.
Properties of this Scheme
Theorem I
The learning algorithm is £optimal.
Sketch of Proof :
We can prove that as N is increased:

$$
\lim _{N \rightarrow \infty} \lim _{n \rightarrow \infty} E[\lambda(n)] \rightarrow \lambda^{*}
$$

The Learning Algorithm

The States of the Markov Chain Integers $\{0,1,2, \ldots, N\}$ State 'i' refers to the value i/N.

The Learning Algorithm

Let Z be the index for which

$$
\mathrm{Z} / \mathbb{N}<\lambda^{*}<(Z+1) / N .
$$

Then if $q=1-p$, the Transition Matrix T is :
$\Rightarrow T_{i, i+1}$
=
p
if $0 \leq \boldsymbol{i} \leq \boldsymbol{Z}$
\Rightarrow
$=\quad q$
if $Z<i \leq N-1$.
$\Rightarrow T_{i, i-1}$
=
q if $1<i \leq Z$
-1
$=p$
if $Z<i \leq N$.

For the self loops :

$$
\begin{aligned}
& T_{0,0}=q \\
& T_{N, N}=q
\end{aligned}
$$

The Markov Matrix

		p	0					0		0				$\begin{array}{ll}0 & 0\end{array} 7^{\mathrm{T}}$	$\left\ulcorner\Pi_{0}\right.$		$\left\lceil\Pi_{0}\right\rceil$
	q	0	p	.				0		0			.	0 01	\| Π_{1}		Π_{1}
	0	q	0	p				0		0				0 01	Π_{2}		Π_{2}
		0	0														
	0	0	0			.	.	p		-				-			
	0	0	0			.	q	0		p					$\Pi_{\text {Z-1 }}$		Π_{Z-1}
	0	0	0			.	0	p		0	q			001	Π_{z}		Π_{z}
	0	0	0			.		0		p	0			0 01	$\Pi_{Z+1} \mid$		Π_{Z+1}
	0	0	0			0 01			
	0	0	0	0	0	0	0	0		0	0	p	p	$0 \quad q$	$\Pi_{\mathrm{N}-1} \mid$		$\Pi_{\mathrm{N}-1}$
	0	0	0	0			0	0		0	0		0	$\left.\begin{array}{ll}p & q\end{array}\right]$	Π_{N}]		Π_{N}

By a lengthy induction it can be proved that :

$$
\begin{array}{lll}
\pi_{\mathrm{i}}=\mathrm{e} . \pi_{\mathrm{i}-1} & \text { whenever } & \mathbf{i} \leq \mathbf{Z} . \\
\pi_{\mathrm{i}}=\pi_{\mathrm{i}-1} / \mathrm{e} & \text { whenever } & \mathbf{i}>\mathbf{Z}, \text { and }, \\
\pi_{\mathrm{Z}+1}=\pi_{\mathrm{Z}} . & &
\end{array}
$$

where $\mathbf{e}=\mathbf{p} / \mathbf{q}<\mathbf{1}$.

The Learning Algorithm

To Conclude the proof compute : $\mathrm{E}[\lambda(\infty)]$ as $\mathrm{N} \rightarrow \infty$.

INCREASE / DECREASE : GEOMETRIC

The Learning Algorithm

As $\mathbf{N} \rightarrow \infty$, the Prob. Mass looks like this :

An Increasing Geometric series
0 till Z. Most of the mass near Z.
A Decreasing Geometric series $\mathrm{Z}+1$ till N . Most of the mass near Z .

Indeed, $\mathrm{E}[\lambda(\infty)]$ is arbitrarily close to λ^{*}.

Example

Partition interval $[0,1]$ into eight intervals

$$
\{\mathbf{0}, \mathbf{1 / 8}, \mathbf{2} / \mathbf{8}, \quad \ldots, 7 / \mathbf{x}, \mathbf{1})\}
$$

Suppose λ^{*} is $\mathbf{0 . 6 5}$.
(i) All transitions for $\{0,1 / 8,2 / 8,3 / 8,4 / 8,5 / 8\}$ Increased with prob. p Decreased with prob. q
(ii) All transitions for $\{6 / 8,7 / 8,1\}$ are : Decreased with prob. p Increased with prob. p

Example

In this case, If $e:=p / q$:

$$
\begin{array}{ll}
\pi_{\mathrm{o}} \leftarrow \mathrm{~K} ; & \pi_{\mathrm{i}} \leftarrow \mathrm{~K} . \mathrm{e} ; \quad \pi_{2} \leftarrow \mathrm{~K} . \mathrm{e}^{2} \\
\pi_{3} \leftarrow \text { K. } \mathrm{e}^{3} ; & \pi_{4} \leftarrow \text { K. } \mathrm{e}^{4} ; \\
\pi_{5} \leftarrow \text { K. } \mathrm{e}^{5} & \pi_{6} \leftarrow \text { K. } \mathrm{e}^{5} ; \\
\pi_{7} \leftarrow \text { K. } \mathrm{e}^{4} ; & \pi_{8} \leftarrow \mathrm{~K}^{3} . \mathrm{e}^{3}
\end{array}
$$

GEOMETRIC

Experimental Results

Table I: True value of $\mathrm{E}[\lambda(\infty)]$ for various p and Various Resolutions, $\mathbf{N} . \lambda^{*}$ is $\mathbf{0 . 9 1 2 3}$.

$\log \mathbf{2 N}$	$\mathbf{p}=\mathbf{0 . 7 0}$	$\mathbf{p}=\mathbf{0 . 8 5}$	$\mathbf{p}=\mathbf{0 . 9 5}$
$\mathbf{2}$	0.7470205	0.8341304	0.8644939
$\mathbf{3}$	0.8615779	0.9167632	0.9322447
$\mathbf{4}$	0.885711	0.9035668	0.9060284
$\mathbf{5}$	0.9164335	0.9215552	0.9218668
$\mathbf{6}$	0.9137105	0.914061	0.9140624
$\mathbf{7}$	0.9101543	0.9101563	0.9101561
$\mathbf{8}$	0.9121094	0.9121095	0.9121093
$\mathbf{9}$	0.9130859	0.9130861	0.9130858
$\mathbf{1 0}$	0.9125975	0.9125977	0.9125975
$\mathbf{1 1}$	0.9123535	0.9123536	0.9123535
$\mathbf{1 2}$	0.9122314	0.9122314	0.9122314

Experimental Results

Figure I: Plot of $\mathrm{E}[\lambda(\infty)]$ with N .

Experimental Results

Figure II: Plot of $\mathrm{E}[\lambda(\infty)]$ with p .

Continuous Solution : L_{RI} Scheme

$$
\left[\begin{array}{l}
\mathrm{p}_{1}(\mathrm{n}) \\
\mathrm{p}_{2}(\mathrm{n}) \\
\mathrm{p}_{3}(\mathrm{n}) \\
\mathrm{p}_{4}(\mathrm{n})
\end{array}\right]=\left[\begin{array}{l}
0.4 \\
0.3 \\
0.1 \\
0.2
\end{array}\right]
$$

If α_{2} Chosen \& Rewarded.
$\rightarrow \mathrm{p}_{2}$ increased;
$\rightarrow \mathrm{p}_{1}, \mathrm{p}_{3}, \mathrm{p}_{4}$ decreased linearly.

$$
\left[\begin{array}{l}
\mathrm{p}_{1}(\mathrm{n}+1) \\
\mathrm{p}_{2}(\mathrm{n}+1) \\
\mathrm{p}_{3}(\mathrm{n}+1) \\
\mathrm{p}_{4}(\mathrm{n}+1)
\end{array}\right]=\left[\begin{array}{l}
0.36 \\
1-0.36-0.9-0.18 \\
0.09 \\
0.18
\end{array}\right]=\left[\begin{array}{l}
0.36 \\
0.37 \\
0.09 \\
0.18
\end{array}\right]
$$

If α_{1} is the best action:

$$
\left[\begin{array}{l}
\mathrm{p}_{1}(\infty) \\
\mathrm{p}_{2}(\infty) \\
\mathrm{p}_{3}(\infty) \\
\mathrm{p}_{4}(\infty)
\end{array}\right] \longrightarrow\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

Continuous Solution

』 Systematically Explore the Given Interval

凤 Use mid-point as the Initial Guess
ภ Partition the interval into 3 sub-intervals
ภ Use \approx-optimal learning in each Sub-interval

Continuous Solution

ภ Is λ^{*} Left, Inside or Right of sub-interval??

ภI Intelligently Eliminate sub-intervals
\& Recursively Search the remaining subinterval(s) until the width is small enough
${ }^{\circ}$ The mid point of this interval is the result.

Adaptive Tertiary Search

$\Omega_{\lambda} \Delta=[\sigma, \gamma)$: Current interval containing λ^{*}.

ภI It is Partitioned into $\Delta^{=1,2,3}$ sub-intervals.
$\Omega \lambda^{*}$ is in exactly one of sub-intervals $\Delta^{-1,2,3}$.
ภ ε-optimal Automata decides Relative Position of Δ with respect to λ^{*}.
ภ) Since points on the real interval are Monotonically Increasing, $\Delta^{4}<\Delta^{2}<\Delta^{3}$

Adaptive Tertiary Search

ภ Pruned Interval $\Delta \supset \Delta$ so that:
, λ^{*} in Δ^{\prime}
, Δ^{\prime} is one of $\left\{\Delta^{1}, \Delta^{2}, \Delta^{3}, \Delta^{1} U \Delta^{2}, \Delta^{2} U \Delta^{3}\right\}$

Adaptive Tertiary Search

ภ. Because of monotonicity of intervals
ภ Because of ε-optimality of the schemes
ภ The above two constraints indicate that

- the Search converges
- Search converges monotonically

Learning Automata for Δ^{j}

凤) Each Automaton :

- Two possible actions : Left Half / Right Half

ภ Uses Input from Teacher: $L_{R I}$ Scheme

ภ Converges after One Epoch to

- Left End $\rightarrow \quad[1,0]^{T}$
- Right End $\rightarrow[0,1]^{T}$
- Cannot Decde (Inside) $\rightarrow \quad[0.78,0.22]^{\top}$ (e.g.).

Location of Δ^{j} Convergence of $L_{R I}$

(a)

(b)

Results on Convergence

ภ) For an Stochastic Teacher \&The $L_{R I}$ If $\left[\lambda^{*}\right.$ Left of $\left.\Delta^{j}\right] \quad$ Then $\operatorname{Pr}\left[\Omega^{\mathbf{j}}=\right.$ Left $] \rightarrow \mathbf{1}$ If $\left[\lambda \lambda^{*}\right.$ Right of $\left.\Delta^{j}\right] \quad$ Then $\operatorname{Pr}\left[\Omega^{\mathbf{1}}=\right.$ Right $] \rightarrow \mathbf{1}$ If $\left[\lambda{ }^{*}\right.$ Inside Δ^{j}] Then
$\operatorname{Pr}\left[\Omega^{\mathbf{I}}=\right.$ Left, Right, Inside $] \rightarrow \mathbf{1}$

Results on Convergence

ภ. Conversely,

> If $\left[\Omega^{\prime}=\right.$ Left $]$ Then $\operatorname{Pr}\left[\lambda^{*}\right.$ Left of $\left.\Delta^{j}\right] \rightarrow \mathbf{1}$ If $\left[\Omega^{\prime}=\right.$ Right $]$ Then $\operatorname{Pr}\left[\lambda^{*}\right.$ Right of $\left.\Delta^{j}\right] \rightarrow \mathbf{1}$ If $\left[\Omega^{\prime}=\right.$ Inside $]$ Then $\operatorname{Pr}\left[\lambda^{*}\right.$ Inside $\left.\Delta^{j}\right] \rightarrow \mathbf{1}$

Decision Table to Prune Δ^{j}

Output Ω^{1} for Δ^{1}	Output Ω^{2} for Δ^{2}	Output Ω^{3} for Δ^{3}	New sub- interval Δ^{\prime}
Left	Left	Left	Δ^{1}
Inside	Left	Left	Δ^{1}
Right	Left	Left	$\Delta^{1} \cup \Delta^{2}$
Right	Inside	Left	Δ^{2}
Right	Right	Left	$\Delta^{2} \cup \Delta^{3}$
Right	Right	Inside	Δ^{3}
Right	Right	Right	Δ^{3}
Δ^{1}		Δ^{2}	

Convergence : Stochastic Teachers

ภ) In the Previous Decision Table
ภ Only 7 out of 27 combinations are shown.
』 The Rest Impossible
\& The Decision Table to prune is Complete
ภ $\operatorname{Pr}\left[\lambda^{*}\right.$ in the Pruned Interval] $\rightarrow 1$

Consequences of Convergence

ภ Consequence : Dual Problem

- If E : Environment w.p. p then, E' has p' $=1-p$
- Dual of an Stochastic Teacher ($p>0.5$) is a Stochastic Liar (p' < 0.5)

Decision Table for Stoch. Liar

ภ. How will the Stoch. Liar Teach ?
\& Left Machine : Converge to Left End
ภ) Right Machine : Converge to Right End

Learning from Stochastic Liar

ภ Start with an Extended Search Interval

$$
\Delta^{\prime}=[-1,2) \text { where as } \Delta=[0,1)
$$

ภ After ONE Epoch
Liar Will Force $[-1,0)$ or $(0,2]$ with Prob. 1.
ภGOTCHA RED HANDED !!!!!
\& We Know Environment is Deceptive

Learning from Stochastic Liar

ภ KNOW Environment is Deceptive
\& Use the Original interval $\Delta=[0,1$)

Treat	Go Left	as	Go Right
	Go Right	as	Go Left !!!!

Experimental Results

Deceptive
$\begin{array}{llll}0.10 & 0.912298 & 0.912273 & 0.912194\end{array}$
Environment

0.15	0.912312	0.912298	0.912222
0.20	0.912193	0.912299	0.912236

$\begin{array}{lllll}\text { Informative } & 0.80 & 0.912317 & 0.912284 & 0.912234\end{array}$ Environment

$$
\begin{array}{llll}
0.85 & 0.912299 & 0.912275 & 0.912202 \\
0.90 & 0.912302 & 0.912275 & 0.912202
\end{array}
$$

Note: $\lambda^{*}=0.9123, \mathrm{~N}_{\infty}=250, \varepsilon=0.005$

Convergence of CPL-ATS

Epoch n

Observations on Results

ภ Convergence : $p=0.1 \& p=0.8$ - almost identical The former is highly deceptive environment
ภ Even in the first epoch ONLY 9\% error
ภ In two more epochs the error is within 1.5\%
\& For p nearer 0.5 the convergence is Sluggish

Conclusions

ภ) Can use a combination of $L_{R I}$ and Pruning
ภ Scheme is ε-optimal.
ภ Can be applied to Stochastic Teachers and Liars
ภ Can detect the nature of Unknown Environment
ภ Can learn the parameter correctly w. p. $\rightarrow 1$

$$
\begin{aligned}
& \text { THANK YOU } \\
& \text { VERY MUCH }
\end{aligned}
$$

How to Simulate Environment

Our idea : analogous to the RPROP network.

$$
\begin{aligned}
\Delta_{\mathrm{ij}}(\mathbf{t}) & =-\Delta_{\mathrm{ij}}(\mathrm{t}-\mathbf{1}) \cdot \eta_{+} & & \text {If } *>\mathbf{0}, \\
& =-\Delta_{\mathrm{ij}}(\mathrm{t}-\mathbf{1}) \cdot \eta_{-} & & \text {If } *<\mathbf{0}, \\
& =\Delta_{\mathrm{ij}}(\mathbf{t}-\mathbf{1}) & & \text { Otherwise. }
\end{aligned}
$$

where η_{+}and η_{-}are parameters of the scheme.
Increments are influenced by
the sign of two succeeding derivatives

Experimental Results

Figure I: Plot of $\mathrm{E}[\lambda(\infty)]$ with N .

Type II Results

Simulations

Hundred parallel experiments for various values of p Record ensemble average of the results

$$
\begin{array}{ll}
\longrightarrow & \mathrm{N}=16, \mathrm{p}=0.7 \\
& \mathrm{~N}=16, \mathrm{p}=0.85
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { By } n=128, \lambda \hat{\lambda})=0.910 \\
(N=16)(p=0.7)
\end{array}
\end{aligned}
$$

$\log _{2} n$
Figure III: Plot of est. of $\mathrm{E}[\lambda(\mathrm{n})]$ with time, n, for $\mathrm{N}=16$. λ^{*} is 0.9123 .

Type II Results

Figure IV: Plot of est. of $\mathrm{E}[\lambda(\mathrm{n})]$ with time, n, for $\mathrm{N}=64$. λ^{*} is 0.9123 .

Learning Automata for Δ^{j} (Cont'd)

๑) Rule for updating action probabilities:

If α_{n} was rewaried,
$\mathbf{P}_{H}{ }^{\prime}(n+1]:=\theta \cdot \mathbf{P}_{H}{ }^{\prime}(n)$
$P_{k}^{\prime}(n+1):=[1-\theta) . P_{1-1}{ }^{\prime}(m)$
where, θ is the $L_{n 1}$ reward parameter
ภ The decision output Ω for at the end of N_{∞} iterations:

10	If $P_{0}\left[\mathrm{H}_{\infty}\right]>=1-\varepsilon$
Right	If $\mathrm{P}_{1}\left[\mathrm{~N}_{\infty}\right]>=1-\varepsilon$
Inside	othenvise.

How to Simulate the Environment

Typically, if E is the Criterion Function
Question:

When is $\delta E / \delta \mathrm{x}$ zero?

Simple Linear rule Moves ' x ' in the direction of the solution.

Second Derivative information tells How much to move.

How to Simulate Environment

Whenever:

Partial Derivative changes sign
\Rightarrow Last update was too big
\Rightarrow Jumped over a local minimum
\Rightarrow Increment is decreased by η.

If the Derivative Retains its sign increment is slightly increased
\Rightarrow Converge faster in shallow regions

How to Simulate environment

Same philosophy for designing E If the Partial Derivative changes sign Decrement value of λ Otherwise Increment it.

Effectively attempting to "simulate" Newton's Rule
Without Evaluating the Second Derivatives.

