Current Applied Research in Machine Learning: Medical Abstracts and Digital Games

Stan Matwin

School of Information Technology and Engineering, University of Ottawa

stan@site.uottawa.ca

joint work with, D. Inkpen, J. Sayyad Shirabad, K. White, J. Su, J. Huang, Y. Ma, W. Elazmeh, O. Frunza

Overview

- Digital-games based learning
- Use of machine learning
- Challenges
- Classification of medical abstract
- Use of machine learning
- Challenges
- Commonalities in challenges

Digital Game Based Learning

- Intersection of Digital Games and E-learning.
- Uses techniques from the interactive entertainment industry to make computerbased training appealing to the end-learner.
- Chances are four to one that an employee under the age of 34 has been playing video games since their teenage years [Beck & Wade 04].

An Auditor Certification Game

Player Decision Through the Game

- What question to ask based on:
 - Given answers
 - Auditee character's body language
 - Environmental observations
 - General experience in auditing task

The problem

- We are interested in the use of digital games for the purpose of testing knowledge of an examinee
- What makes a person an expert is not a crisply defined concept.
- In a typical DGBL scenario there are many there are many gameplay patterns that could be considered expert behaviour.

Solution

- Cast the problem as a classifier learning problem
- Initial training phase:
 - Experts and non-experts will play games and submit their game logs (GL).
 - The gameplay analysis system will learn profiles of expert and non-expert (auditors) by learning models from the repository of stored GLs.

Solution (Continued)

- Production phase:
 - Submit a GL to the gameplay analysis system.
 - The system will classify the GL (expert/nonexpert) and generate a report
 - The instructional designer will receive the report and can accept it or further review it.
 - The GL, with its corresponding expert or nonexpert label, is then added to the repository of GLs.

Learning the Profiles

- Deciding as to what information in the game logs should be present in an example e.g. what questions were asked
- Encoding the example and creating other supporting input needed by the algorithm e.g. a Boolean variable for each question.
- Generating the model from the example using a classifier learning algorithm e.g. Decision
 Tree learner

Generating the Feedback

- The learned model (profile) needs to be explainable e.g. c4.5 decision tree (Quinlan 1993), or rules generated by a rule learner such as Ripper (Cohen 1995).
- The feedback depends on the algorithm used

Observation

- There are many fewer experts in real word than non-experts
 - Generate synthetic expert gameplays
- Not all events e.g. questions are created equally
 - ➤ We will increase expressiveness and generalization power of the learned models by using additional meta data about the events
- Meta data examples:
 - ➤ Open, closed, challenging, factual

Challenges

- very little data to learn from
- data is imbalanced
- explainability of results a must

Classifying medical abstracts

- Systematic Reviews -Trialstat
- Task fits with text classification, so classifier lerarning is a possible solution
- Embedding Machine Intelligence for Systematic Reviews (EMISAR)

Systematic reviews

- A big industry
- Time and personnel consuming, expensive
- A knowledge-based process
- Needs tools

Our solution

Challenges

- Imbalanced data
- Noise in the data
- Reviews are heterogeneous
- Very high recall required
- What makes satisfactory precision?
- Cohen's WSS measure

Commonalities

- Need to understand the application well
- Imbalanced data
- Embedded solution
- What is the right performance measure?

Future Work

- Alternative algorithms including the capturing unique features of the system we embed in
- Finding the right classifier
- Use of transduction/co-training
- Active learning

Thank you