A Robust Hybrid Intelligent Position/Force Control Scheme for Cooperative Manipulators

Wail Gueaieb

School of Information Technology and Engineering
University of Ottawa

Talk Overview

- → Introduction
- → Problem Statement
- → Standard Adaptive Control of CR
- → Adaptive Fuzzy Controllers
- → A Hybrid Adaptive Control Scheme
- → Conclusions
- → Future Research Directions

Introduction

■ Why Cooperative Robots?

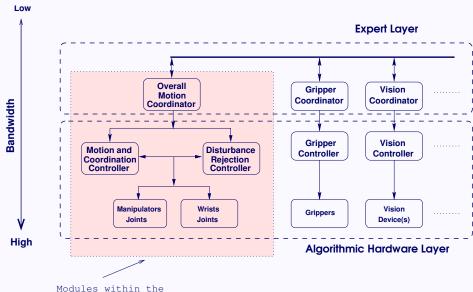
- ◆ More efficient handling of certain objects
 - > Cardboards
 - ➤ Large sheets of glass
 - ➤ Heavy and/or large objects, in general
- ◆ Certain tasks may be too complex for a single manipulator system
 - > Space missions
 - Underwater oil pipelines maintenance

Introduction (cont'd)

Research Scope

Although cooperative robots usually consist of several modules, the main focus here is on:

- ★ Position and force control, and
- * External disturbance attenuation.



Modules within the scope of this research

Introduction (cont'd)

- Challenges of CR Control
- ★ Not much research done in the control of strongly coupled CR.
- Control of strongly coupled CR is much more complex than that of single robotic systems:
 - ★ Kinematic and dynamic coordination.
 - ◆ Ubiquitous presence of uncertainties.
 - ◆ Stricter stability criteria.
- Necessity to develop robust control approaches to keep up with the increasingly demanding design requirements.

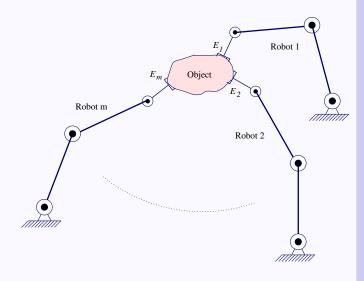
Introduction (cont'd)

■ Brief History of CR Control

Types	Main References	Shortcomings
Non-adaptive	Tarn et al. 87, 88, 92 Bergerman et al. 98	No control on internal forces.Model based: no uncertainties.
Adaptive	Hu et al. 93 Vukobratovic et al. 98 Liu et al. 98 Sun et al. 02 Szewczyk et al. 02	◆ No modeling uncertainties.
Soft computing	Ge et al. 99	 No control on internal forces. Neural network

Problem Statement

Consider two or more cooperative manipulators holding a common object.



- ★ Control Objectives:
 - ◆ Simultaneously

◆ In the presence of

- Track predefined object's trajectory (position and orientation.)
- Make internal forces converge to desired values.
- Parametric (structured) uncertainties (e.g., load's mass and inertia.)
- Modeling (unstructured) uncertainties (e.g., unknown time-varying external disturbances.)

Wail Gueaieb 7 of 28

CR Dynamics

In a CR system, the ith manipulator's dynamics may be expressed as

$$\tau_i = D_i(q_i)\ddot{q}_i + C_i(q_i, \dot{q}_i)\dot{q}_i + G_i(q_i) - \tau_{d_i} - J_{\phi_i}^T(q_i)f_i$$

 q_i : joint coordinates

 au_i : joint torque/force applied by actuator (controller's output)

 τ_{d_i} : disturbance vector

 $J_{\phi_i}(q_i)$: Jacobian matrix from payload's center of mass to q_i

 f_i : internal force between end-effector and payload

 $D_i(q_i)$: inertial matrix including payload's inertial

 $C_i(q_i,\dot{q}_i)$: Coriolis and centrifugal matrix including payload's terms

 $G_i(q_i)$: Gravitational vector including payload's gravitational terms

Standard Adaptive Control of CR

★ One of the most recent and efficient CACs was proposed by Liu et al. Control law of ith manipulator:

$$\tau_i = \hat{D}_i(q_i)\ddot{q}_{r_i} + \hat{C}_i(q_i, \dot{q}_i)\dot{q}_{r_i} + \hat{G}_i(q_i) - K_{s_i}s_i - J_{\phi_i}^T(q_i)(K_i\tilde{x} + f_{d_i})$$

 \hat{A} : estimate of matrix A with parametric uncertainties only $\tilde{x} = x - x_d$: position error of the payload's center of mass $\dot{q}_{r_i} = J_{\phi_i}^+(q_i)(\dot{x}_d - \gamma_i \tilde{x})$: the reference joint velocity $s_i = \dot{q}_i - \dot{q}_{r_i}$: residual error of the reference joint velocity $J_{\phi_i}^+(q_i)$: pseudo-inverse of $J_{\phi_i}(q_i)$ f_{d_i} : desired internal force K_{s_i} and K_i : positive definite gain matrices

- ◆ Compensates for parametric uncertainties only.
- ◆ Assumes perfect knowledge of the working environment model.
- No compensation for modeling uncertainties nor for unstructured external disturbances.

Wail Gueaieb

Standard Adaptive Control of CR (cont'd)

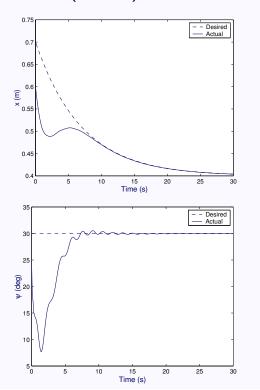
Numerical Results

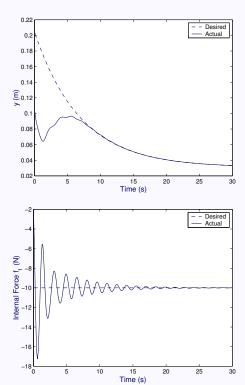
- ◆ Two 3-DOF manipulators.
- ◆ Payload to follow an oblique line between the two manipulators.
- ♦ Internal forces lines of actions are **not** orthogonal to payload's trajectory, with desired values $f_{d_1} = -f_{d_2} = 10$ N.
- \bullet $\tau_{d_1} = \alpha(\Gamma \dot{q}_1 + \rho(t) + \lambda)$, $\tau_{d_2} = -\alpha(\Gamma \dot{q}_2 + \rho(t) + \lambda)$

Standard Adaptive Control of CR (cont'd)

Experiment 1

- ◆ Parametric uncertainties only (payload's mass).
- ♦ No modeling uncertainties and no unstructured external disturbances ($\alpha = 0$).



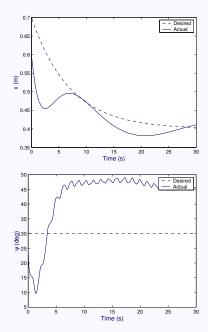


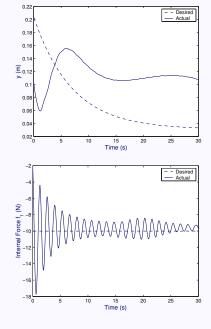
Wail Gueaieb

Standard Adaptive Control of CR (cont'd)

Experiment 2

♦ Modeling uncertainties are introduced in the form of unknown timevarying external disturbances (intensity level $\alpha = 1$)



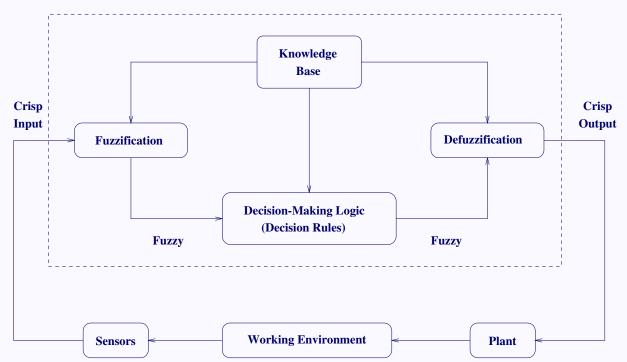


Soft Computing Based Controllers

- ★ CR usually have very complex dynamics.
 - deriving a precise model is extremely difficult.
- ★ Soft computing tools do not require a precise dynamics model.
- ★ Main focus here: fuzzy logic based controllers (FLCs.)
 - ◆ Rule-based expert systems: use of human-like linguistic variables, values, and simple if-then rules.
 - ◆ Powerful in representing human knowledge.

Soft Computing Based Controllers (cont'd)

Fuzzy Logic Controller



Soft Computing Based Controllers (cont'd)

Merits of FLCs

- → No need for a precise model.
- ➡ Robustness: tolerate noise and time-varying parameters in the plant's dynamics.
- Generic: can be transferred from one platform to another with minor modifications.

Drawbacks of FLCs

- heavily dependent on human expertise.
- Lack of efficient and systematic online adaptation mechanism to adapt to varying working conditions.

Adaptive Fuzzy Controllers

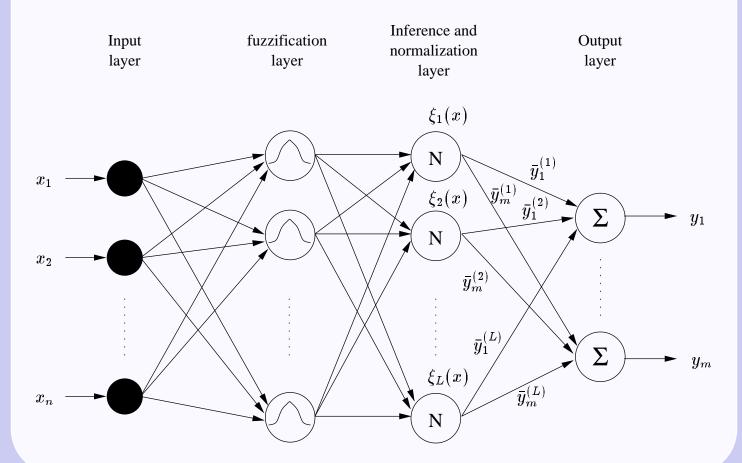
- * Adaptive fuzzy controllers (AFCs) compensate for the shortcomings of static FLCs while inheriting their strengths.
 - ◆ Adaptation: ability to learn plant's dynamics online.
 - → Higher robustness than CACs in the face of parametric and modeling uncertainties.
- \star Adaptive fuzzy controller's jth output:

$$y_{j} = \sum_{l=1}^{L} \bar{y}_{j}^{(l)} \xi_{l}(x) = \Theta_{j}^{T} \xi(x)$$

$$\Theta_{j}^{T} = (\bar{y}_{j}^{(1)}, \dots, \bar{y}_{j}^{(L)}), \quad \xi^{T}(x) = (\xi_{1}(x), \dots, \xi_{L}(x))$$

$$\xi_{l}(x) = \frac{\prod_{i=1}^{n} \mu_{A_{i}^{(l)}}(x_{i})}{\sum_{k=1}^{L} \left(\prod_{i=1}^{n} \mu_{A_{i}^{(k)}}(x_{i})\right)}, \quad l = 1, \dots, L.$$

Adaptive Fuzzy Controllers (cont'd)



Wail Gueaieb

17 of 28

A Hybrid Adaptive Control Scheme

Let A^* denote the best possible approximation of matrix A in the face of parametric uncertainties.

Then A's modeling error can be expressed as $\bar{A} = A - A^*$.

Hence, the ith manipulator control law may be reformulated as:

$$\tau_{i} = \underbrace{\hat{D}_{i}^{*}(q_{i})\ddot{q}_{r_{i}} + \hat{C}_{i}^{*}(q_{i},\dot{q}_{i})\dot{q}_{r_{i}} + \hat{G}_{i}^{*}(q_{i}) - K_{s_{i}}s_{i} - J_{\phi_{i}}^{T}(q_{i})(K_{i}\tilde{x} + f_{d_{i}})}_{\tau_{i}^{(c)}} + \underbrace{\bar{D}_{i}(q_{i})\ddot{q}_{r_{i}} + \bar{C}_{i}(q_{i},\dot{q}_{i})\dot{q}_{r_{i}} + \bar{G}_{i}(q_{i}) - \bar{\tau}_{d_{i}}}_{\tau_{i}^{(f)}}$$

 $au_i^{(c)}$: CAC's torque output (parametric uncertainties only)

 $au_i^{(f)}$: **supervisory** adaptive fuzzy regulator operating at a higher hierarchical level (lower bandwidth) than that of the CAC.

$$au_i^{(f)}$$
 is modeled as an AFC $\qquad \Longrightarrow \qquad au_i^{(f)} = \hat{U}_i(q_i,\dot{q}_i,\dot{q}_{r_i},\ddot{q}_{r_i}|\Theta_i)$

A Hybrid Adaptive Control Scheme (cont'd)

■ AFC's Computational complexity

$$\tau_i^{(f)} = \hat{U}_i(q_i, \dot{q}_i, \dot{q}_{r_i}, \ddot{q}_{r_i} | \Theta_i)$$

- ◆ 4 input vectors
- $\star k_i$ DOF for manipulator i
- \bullet κ_i membership functions to fuzzify each input element
- Total number of fuzzy rules fired by the AFC at manipulator i is $L_i = (\kappa_i)^{4k_i}$

For
$$\kappa_i = 5$$
 and $k_i = 3$ \longrightarrow $L_i = 244, 140, 625$ (too large!)

Wail Gueaieb 19 of 28 ← → → → ← Z ? ⊗ X

A Hybrid Adaptive Control Scheme (cont'd)

■ Rule Decomposition Scheme

♦ Idea: aggregate $\hat{U}_i(q_i, \dot{q}_i, \dot{q}_{r_i}, \ddot{q}_{r_i}|\Theta_i)$ into several MIMO AFCs:

$$\tau_{i}^{(f)} = \underbrace{\bar{D}_{i}(q_{i})\ddot{q}_{r_{i}} + \underbrace{\bar{C}_{i}(q_{i},\dot{q}_{i})\dot{q}_{r_{i}} + \bar{G}_{i}(q_{i}) - \bar{\tau}_{d_{i}}}_{\hat{U}_{i}^{2}(q_{i},\dot{q}_{i},\dot{q}_{r_{i}})}$$

- lacktriangle Unknown time-varying jth column of $D_i(q_i)$ can be approximated by a MIMO AFC $\hat{U}_{ij}^1(q_i|\Theta_{ij}^1)$.
 - $\bar{D}_i(q_i)\ddot{q}_{r_i} \approx \sum_{i=1}^{k_i} \hat{U}_{ij}^1(q_i|\Theta_{ij}^1)\ddot{q}_{r_{ij}}.$
- \bullet \dot{q}_{r_i} is dependent on q_i
 - $\hat{U}_i^2(q_i, \dot{q}_i, \dot{q}_r)$ can be replaced by $\hat{U}_i^2(q_i, \dot{q}_i | \Theta_i^2)$.
- ◆ The torque offset generated by the supervisory adaptive fuzzy regulator module is:

$$\tau_i^{(f)} = \sum_{j=1}^{k_i} \hat{U}_{ij}^1(q_i|\Theta_{ij}^1)\ddot{q}_{r_{ij}} + \hat{U}_i^2(q_i,\dot{q}_i|\Theta_i^2)$$

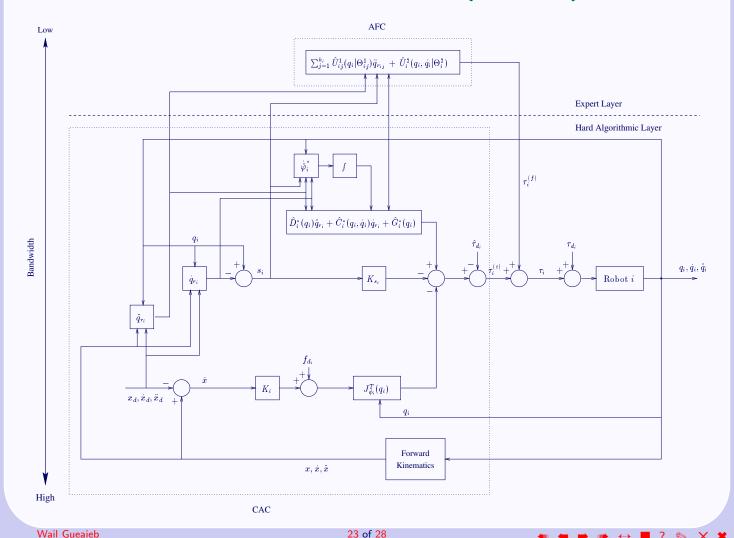
Computational Complexity

- lacktriangle Each $\hat{U}^1_{ij}(q_i|\Theta^1_{ij})$ fires $L^1_{ij}=(\kappa_i)^{k_i}$ rules.
- lacktriangle Number of rules fired by $\hat{U}_i^2(q_i,\dot{q}_i|\Theta_i^2)$ is $L_i^2=(\kappa_i)^{2k_i}$.
- ♦ Hence, the total number of rules fired by the AFC is $L_i = k_i(\kappa_i)^{k_i} + (\kappa_i)^{2k_i}$ for each robot.
 - Only $[(\kappa_i)^{k_i} + (\kappa_i)^{2k_i}]$ of them have different firing strengths $(\ll (\kappa_i)^{4k_i})$.
- ♦ For $\kappa_i = 5$ and $k_i = 3$ mumber of distinct firing strengths to be computed for each robot is 15,750 ($\ll 244,140,625$).

Theorem 1 If the controller's gains satisfy the required constraints, then the HIC gives rise to an asymptotic convergence of the payload's position and the internal forces tracking errors, \tilde{x} and \tilde{f}_i , to zero.

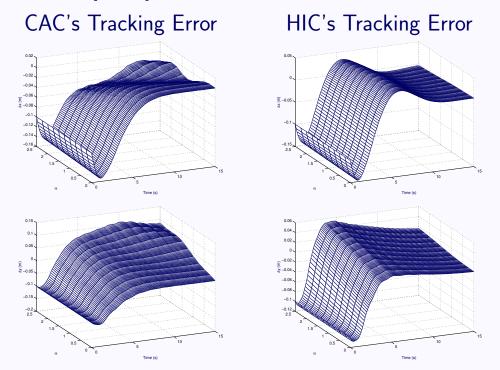
Numerical Results

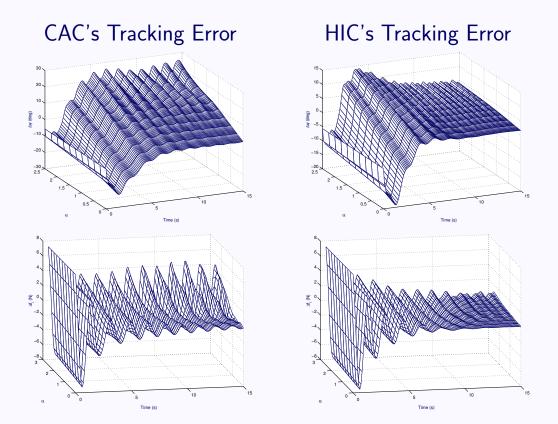
- ◆ 5 Gaussian membership functions are used to fuzzify each input of the AFC module of the HIC.
- ♦ AFC module has no prior knowledge of the manipulators dynamics (i.e., Θ^1_{ij} and Θ^2_i are initially set to zero for i=1,2 and $j=1,\ldots,k_i$).
- ◆ 50% of the manipulators dynamics model is assumed to be known (for CAC.)
- ◆ For better computational efficiency, the supervisory adaptive fuzzy regulator module of the HIC is set to operate at a bandwidth 4 times lower than that of the CAC.



Experiment

♦ Intensity level of modeling uncertainties is varied by letting α span the interval [0, 2.5].





Conclusions

- ★ Complex problem of controlling closed kinematic chain mechanisms: kinematic and dynamic coordination.
- Most adaptive controllers show success in the face of parametric uncertainties only.
- ★ A novel hierarchical knowledge-based control scheme is proposed for the control of CR.
- ★ Innovative rule reduction technique is presented to significantly reduce the computational complexity.
- ★ First attempt to control CR in the face of both structured and unstructured uncertainties.

Conclusions (cont'd)

- Key characteristics of proposed hierarchical knowledge-based controller:
 - ◆ Robustness in the face of parametric and modeling uncertainties of varying intensity levels.
 - ◆ Both, position and internal force tracking errors are proven to converge to zero.
 - ◆ Generic: easily portable from one platform to another (minor tunings may be needed.)

Future Research Directions

- * Allow the automatic tuning of antecedent membership functions.
- ★ Extend the zero-order Sugeno-type AFC to a first-order one: potential of higher approximation capabilities.
- ★ Extend the FLC model to a type-2 FLC to improve controllers robustness.

