Let Your Muscles Do the Talking

Myoelectrically Controlled Prostheses
to

Myoelectric Speech Recogntion

<= Carleton

~. UNIVERSITY

Adrian ID. €. Chan

Departyment of Systenss and- Copmpriter Engineering




Upper Arm Prostheses




Body Powered Prostheses

m Advantages

= Simple

u Proptioception
® Disadvantages

a1 Comfort

u Restricted range of
motion

a [Limited function
cnvelope




Powered Prostheses

m Advantages

= [rees user from straps
and harnesses

m BEffort needed to actuate
approximately the same as
intact limb

® Disadvantages
» Battery life
u Complexity
u Controllability



Myoelectric Signals

AMP

Myoelectric signals are
electrical signals associated
with the contraction of a
muscle.



Myoelectric Signals

m Muscle activation

m Contraction fotrce
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Level-coded scheme

mean absolute value




Limitations

B [.imited Function

m [ evel-coding scheme allows only one or two classes
of motion to be teliably controlled

» Multifunctional control would require mote
myoclecttic conttol sites

m Awlkward Interface

» Contrived muscle contractions ate used to select
functions
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Continuous Myvoelectric Control

Classifier

elbow flexion




Continuous Myoelectric Control
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Continuous Myoelectric Contro

Classitier
hand open




Continuous Myoelectric Control

Myoelectric
Signals Prosthetic
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...,—n-‘_




Feature Reduction

m Improve classification accuracy

m Reduce the training time

Haykin S, Neural Networks: A Comprehensive’ %
Foundation, Maxwell MacMillan Canada, Inc., i
Donl\/ﬁlls,,_On_‘_célﬁb, 1994. - = . o




Feature Reduction

ANN with PCA

Number of Features

wﬁnglehart K, Hudgins B, Parker PA, ~ ~ g
Stevenson M, “Classification of myoelectric” 3
signal using time=based representations,
Med. Eng. Phys., 21: 431-438, 1999.



ANN versus LDA
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ANN versus LDA

m ANN has the advantage of prescribing nonlinear
class boundaries

m [n an ideal situation, ANN will always be able to
match ot outperform LIDA




ANN versus LDA

m Feature set dimensionality increases

m Class boundary nonlinearity decreases

m LDA avoids over- and under-training




dowing

1n

W




indowing

1n

W




dowing

1n

W




Windowing




ing

indow

W

3




ing

indow

W

o o

& VY VY VUV
h A b adh o A 4

g




Majority Vote
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Majority Vote
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Majority Vote

m (Classification accuracy improvements of
approximately 2%

N Signiﬁcant improvement considering ACCUTACIES atre
already above 907 classification accuracy




Other Classifiers

B [Hidden Markov Models

B Gaussian Mixture Models

B [fuzzy lLogic Systems




Myoelectric
Speech
Recognition



Myoelectric Speech Recognition

Complex Instrumentation

—

Alternative Control Methodologies

-------------



Conventional Speech Recognition




Conventional Speech Recognition




Conventional Speech Recognition
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Myoelectric Speech Recognition

B not corrupted by audio noise

m there are similar sounding words with unique
mouth positions implying unique myoelectric
signals

Example: “sign’ and “fine”




Myoelectric Speech Recognition

Linear Discriminant Analysis
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Myoelectric Speech Recognition

Linear Discriminant Analysis
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Data Collection

m 2 subjects
® 5 myoelectric signals

m 10 word vocabulary
= “zero” through “nine”

» Random order

“six”,  “four”, . “three”
Ccone77, CCZerO’), . C(ﬁve))
Cceight7?’ “SiX,, C.CtW()?)
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Temporal Variance

Train Test

Training set uses a

zelile fixed pre-trigger of
my01 500 ms
myo2 Temporal variance
myo3 introduced by varying
the pre-trigger of the
myo4 test set

myo>S




Temporal Variance
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Temporal Variance

Train Test

Training set uses a

geoLstc fixed pre-trigger of
my01 500 ms
myo2 Temporal variance
myo3 introduced by varying
the pre-trigger of the
e | . test set
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Hidden Markov Models

m States

® Obsetrvation probabilities

B State transitions

u State transition probabilities




Hidden Markov Models

B [Hidden Markov model structure enables it to
cope with time-scale variance and shape variance

m Used extensively in acoustic speech recognition

LI




Classification Error (%)
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Myoelectric Speech Recognition
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Multi-Expert System
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Evidence Theory

m [Enables precise assignment of partial beliefs

m Provides method of combining partial beliefs
from multiple bodies of evidence

K Khr GJ Yuan B Fﬂ{gy sez‘s cmd f%f{g)/ i,
logie: z‘/yeog/ amd dpp/mz‘zom Prenﬂce—



Evidence Theory

B [Frame of discernment ®

® Set of mutually exclusive classes C. E l

s [ncludes the empty set @

m Basic probability assignment
u m(A) assigns a portion of belief to the set A

Khr GJ Yuan B Fﬂ{{y m‘s cma’ fﬂ{gy
logic: theory and applications, Prentice- - -
Hall, Upper Saddle Creek NJ, 1995. A



Evidence Theory

B [Frame of discernment ®

® Set of mutually exclusive classes C. E l
8 [ncludes the empty set & oﬁ.

m Basic probability assignment

=

u m(A) assigns a portion of belief to the set A

B Sct A cani be a single class
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Evidence Theory

B [Frame of discernment ®

® Set of mutually exclusive classes C. E lﬁ

s [ncludes the empty set @

m Basic probability assignment
u m(A) assigns a portion of belief to the set A
u Set A can be a single class

8| Sct A canimnclude multiplerclasses

Khr GJ Yuan B Fﬂ{gy sez‘s cmd fﬂf{
logie: z‘/yeog/ cmd dpp/mz‘zom Prenﬂce—



Evidence Theory

m Bayesian theory m Evidence theory

m No evidence: B No evidence:

Pr(C) = 1/N m(B) =

3=
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Evidence Theory

m Bayesian theory m Evidence theory

m No evidence: B No evidence:

Pr(C) = 1/N m(©) = 1

Klir GJ, Yuan B, Fuzgy seis and fuzzy &
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Evidence Theory

m Bayesian theory m Evidence theory

B No evidence: B No evidence:

Pr(C) = 1/N m(B) = 1
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Klir GJ, Yuan B, Fuzzy sets and fuzzy
logic: theory and applications, Prentice- -
Hall, Upper Saddle Creek NJ, 1995, #0F #%
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Evidence Theory

m Bayesian theory m Evidence theory
= No evidence: = No evidence:
Pr(C) = 1/N m(®) = 1
m Pr(A) implics B m(AY docs not imply;

Pr(—A) =1 —Pr(A) m((IAY) = 1 — m(AY

-.h.m'r?” s .:.L?.J:;_"':J. "'"“:f T,
Klir GJ, Yuan B, Fuzzy sets and fuzzy o
logic: theory and applications, Prentice- - ]
Hall, Upper Saddle Creek NJ, 1995.
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Plausibility Method
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Multi-Expert System
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Multi-Expert System
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Classification Accuracy (%)

Multi-Expert System
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Discussion

® A multi-expert system can be applied in a variety of
applications
u Speech recognition (acoustic, visual, myoelectric)

m Person identification (fingerprint, voice)

B As mono-modal approaches saturate in performance, a
multi-modal system provides a means of significantly
improving performance and tobustness

m Performance can also be enhanced by multiple channels
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Continuous Prosthetic Control

ANN HMM
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Continuous Prosthetic Control

HMM ANN Multi-expert

Subject1  84% 88% 91%
Subject2  94% 91% 95%
Subject3  90% 86% 92%

Average 89% 88% 93%
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Advanced Myoelectric
Control




Static Contractions

Elbow Flexion
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Hudgins B, Parker P, Scott RN, “A new
strategy for multifunction myoelectric
control,” IEEE Transactions on

Biomedical Engineering, 40(1):82-94, 1993.




Dynamic Contractions

Elbow Flexion
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Hudgins B, Parker P, Scott RN, “A new
strategy for multifunction myoelectric
control,” IEEE Transactions on
Biomedical Engineering, 40(1):82-94, 1993.
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Dynamic Contractions

Elbow Flexion Elbow Extension Pronation
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Dynamic Contractions

Elbow Flexion
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Hudgins B, Parker P, Scott RN, “A new
strategy for multifunction myoelectric
control,” IEEE Transactions on
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Control System

Artificial Neural Network
e Full connected

Two myoelectric control sites:

* Bicep brachii * 2-layer
e Tripcep Brachii , *Backpropagation training
Segment
» Feature > » Decision ——  State
@7 Anaﬂy\sis
E\?able
v Time domain features:
Mean * Mean Absolute Value
Absolute [ Threshold * Mean Absolute Value Slope
Value * Zero Crossings

* Slope Sign Changes

* Waveform Length
Detect

Muscle

activity
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Results

m 90% accuracy for 4 limb motions

m Non-intuitive interface

u Sclection of prosthetic function required an initiation
of contraction from rest

| Imagine picking upia cup




Evidence Theory

bt Bel(A)z Zm(B)

B|IBCA

® Sum of all partial beliefs assuming all uncertainties
do not support proposition A
m Plausibility: PI(A) N Z m(B)

BIBNA#J
u Sum of all partial beliefs assuming all uncertainties

do support proposition A




