Let Your Muscles Do the Talking Myoelectrically Controlled Prostheses to Myoelectric Speech Recogntion

Adrian D. C. Chan

Department of Systems and Computer Engineering

Upper Arm Prostheses

Body Powered Prostheses

Advantages ■ Simple Proprioception Disadvantages ■ Comfort Restricted range of motion Limited function envelope

Powered Prostheses

Advantages

- Frees user from straps and harnesses
- Effort needed to actuate approximately the same as intact limb
- Disadvantages
 - Battery life
 - Complexity
 - Controllability

Myoelectric Signals

AMP

Myoelectric Signals

Muscle activation

Contraction force

Conventional Myoelectric Control

Level-coded scheme

Limitations

Limited Function

- Level-coding scheme allows only one or two classes of motion to be reliably controlled
- Multifunctional control would require more myoelectric control sites

Awkward Interface

Contrived muscle contractions are used to select functions

Continuous Myoelectric Control

Continuous Myoelectric Control

Englehart K, Hudgins B, Parker PA, Stevenson M, "Classification of myoelectric signal using time-based representations, Med. Eng. Phys., 21: 431-438, 1999.

Feature Reduction

Improve classification accuracy

Reduce the training time

Haykin S, Neural Networks: A Comprehensive Foundation, Maxwell MacMillan Canada, Inc., DonMills, Ontario, 1994.

Feature Reduction

Englehart K, Hudgins B, Parker PA, Stevenson M, "Classification of myoelectric signal using time-based representations, Med. Eng. Phys., 21: 431-438, 1999.

ANN versus LDA

 ANN has the advantage of prescribing nonlinear class boundaries

In an ideal situation, ANN will always be able to match or outperform LDA

ANN versus LDA

Feature set dimensionality increases
 Class boundary nonlinearity decreases

LDA avoids over- and under-training

Target ClassNo MV

• MV

Target ClassNo MV

• MV

Classification accuracy improvements of approximately 2%

Significant improvement considering accuracies are already above 90% classification accuracy

Other Classifiers

Hidden Markov Models

Gaussian Mixture Models

Fuzzy Logic Systems

Myoelectric Speech Recognition

Myoelectric Speech Recognition

Complex Instrumentation

Alternative Control Methodologies

Automatic Speech Recognition

Conventional Speech Recognition

Conventional Speech Recognition

Conventional Speech Recognition

not corrupted by audio noise

there are similar sounding words with unique mouth positions implying unique myoelectric signals

Example: "sign" and "fine"

Data Collection

2 subjects **5** myoelectric signals ■ 10 word vocabulary "zero" through "nine" Random order "six", "four", ..., "three" "one", "zero", ..., "five" "eight", "six", ..., "two"

Training set uses a fixed pre-trigger of 500 ms

Temporal variance introduced by varying the pre-trigger of the test set

Training set uses a fixed pre-trigger of 500 ms

Temporal variance introduced by varying the pre-trigger of the test set

Training set uses a fixed pre-trigger of 500 ms

Temporal variance introduced by varying the pre-trigger of the test set

Training set uses a fixed pre-trigger of 500 ms

Temporal variance introduced by varying the pre-trigger of the test set

Results

Results

Hidden Markov Models

States
 Observation probabilities
 State transitions
 State transition probabilities

Hidden Markov Models

Hidden Markov model structure enables it to cope with time-scale variance and shape variance

Used extensively in acoustic speech recognition

Results

Multi-Expert System

Enables precise assignment of partial beliefs

 Provides method of combining partial beliefs from multiple bodies of evidence

Frame of discernment O

 Set of mutually exclusive classes C_i
 Includes the empty set Ø

 Basic probability assignment

 m(A) assigns a portion of belief to the set A

Frame of discernment O

Set of mutually exclusive classes C_i
Includes the empty set Ø

Basic probability assignment

m(A) assigns a portion of belief to the set A
Set A can be a single class

 \blacksquare Frame of discernment Θ \blacksquare Set of mutually exclusive classes C_i Includes the empty set \varnothing Basic probability assignment \blacksquare m(A) assigns a portion of belief to the set A ■ Set A can be a single class Set A can include multiple classes

Bayesian theory

Evidence theory

• No evidence: $Pr(C_i) = 1/N$ • No evidence: $m(\Theta) = 1$ C_1 C_2 C_2 C_3 C_4 C_4

Bayesian theory

Evidence theory

• No evidence: $Pr(C_i) = 1/N$ • No evidence: $m(\Theta) = 1$ $C_1 \qquad C_2$ $C_2 \qquad C_4$ $C_3 \qquad C_4$

Bayesian theory

Evidence theory

• No evidence: $Pr(C_i) = 1/N$ • No evidence: $m(\Theta) = 1$ $C_1 \qquad C_2$ $C_2 \qquad C_4$ $C_3 \qquad C_4$

Bayesian theory

Evidence theory

• No evidence: $Pr(C_i) = 1/N$ ■ No evidence: m(Θ) = 1

■ Pr(A) implies $Pr(\neg A) = 1 - Pr(A)$ $Fr(\neg A) = 1 - Pr(A)$ C_1 C_2 C_3 C_4 C_4

Multi-Expert System

Multi-Expert System

Discussion

- A multi-expert system can be applied in a variety of applications
 - Speech recognition (acoustic, visual, myoelectric)
 - Person identification (fingerprint, voice)
- As mono-modal approaches saturate in performance, a multi-modal system provides a means of significantly improving performance and robustness
- Performance can also be enhanced by multiple channels
Continuous Prosthetic Control

Continuous Prosthetic Control

Continuous Prosthetic Control

	HMM	ANN	Multi-expert
Subject 1	84%	88%	91%
Subject 2	94%	91%	95%
Subject 3	90%	86%	92%
Average	89%	88%	93%

Let Your Muscles Do the Talking Myoelectrically Controlled Prostheses to Myoelectric Speech Recogntion

Adrian D. C. Chan

Department of Systems and Computer Engineering

Advanced Myoelectric Control

Static Contractions

Elbow Flexion

Hudgins B, Parker P, Scott RN, "A new strategy for multifunction myoelectric control," IEEE Transactions on Biomedical Engineering, 40(1):82-94, 1993.

Dynamic Contractions

Elbow Flexion

Hudgins B, Parker P, Scott RN, "A new strategy for multifunction myoelectric control," IEEE Transactions on Biomedical Engineering, 40(1):82-94, 1993.

Dynamic Contractions

Elbow Flexion

Elbow Extension

Pronation

Wrist Flexion

Supination

Dynamic Contractions

Elbow Flexion

Hudgins B, Parker P, Scott RN, "A new strategy for multifunction myoelectric control," IEEE Transactions on Biomedical Engineering, 40(1):82-94, 1993.

Control System

Control System

Results

■ 90% accuracy for 4 limb motions

Non-intuitive interface
Selection of prosthetic function required an initiation of contraction from rest
Imagine picking up a cup

Evidence Theory Belief: $Bel(A) = \sum_{B|B \subset A} m(B)$ ■ Sum of all partial beliefs assuming all uncertainties do not support proposition A ■ Plausibility: $Pl(A) = \sum_{B|B \cap A \neq \emptyset} m(B)$ ■ Sum of all partial beliefs assuming all uncertainties do support proposition A $A = C_1 \cup C_4$ C_{2}